Kemp Counter-Timer Model 4DS10

Kemp Counter-Timer Model 4DS10

S.N. 363, 240Vac

Made by E.A.Kemp P/L, Sydney. Supplied by Watson Victor Ltd
eBay Jan 2020, \$45

Power On/Off switch
Speaker Off-Volume pot
Reset Press switch
Manual Count / Time Off/On
9-pin Noval socket for Input

Parts:

Transformer: PF2241/4; 3-66 240V
Valve: \quad 12AT7 Mullard 005
12AT7 Mullard 005
12AU7 Toshiba
DK24 x4, Okaya 5LY;5LY;5LY; 6AZ 14-pin loctal
Resistors: YJ (Japan ?)
Pot IRCD6 $1 \mathrm{Meg} / \mathrm{C}$ CTS45
Caps: Ducon 146 ; 075H Mustard 095H
PCB KEMP PU 1 (power supply pcb)
IU3 KEMP
Speaker $\quad 8 \Omega 0.4 \mathrm{~W}$ JAPAN 28
Transformer ? ohm to 8 ohm DCR=680
Sensor $1 \quad$ Philips ZP1481 with socket and 50 ohm coax with TNC connectors.
Sensor 2 Mullard MX147 8504 kJO k4k with 9-pin Noval socket (kJ = MX147; k=? $4=1964,74,84$)
Pins 2 to 6 , with cap from 2 to 4 . Cap is red, black, white - measures about 2 pF - likely
Philips 2pF 500Vdc.

Issues:

Corroded PSU pcb. Corroded chassis holes and on chassis top surface. Leaky electrolytics. High DC voltages at power on for cap ratings. High working DC voltage for some Geiger tubes. Hazardous voltages on the front panel Noval socket.

Note:

E.A.Kemp P/L, Punchbowl. Deregistered 1982. ACN: 000452620

https://vintage-radio.net/forum/showthread.php?p=856407

http://lampes-et-tubes.info/cd/cd153.php?l=e
Page 652-3, Electronic apparatus
https://ia800205.us.archive.org/15/items/electronicappara00dona/electronicappara00dona.pdf
https://www.google.com/url?sa=i\&url=https\%3A\%2F\%2Ffrank.pocnet.net\%2Fother\%2FPhilips\%2Felcoma\%
2FPhilips ElectronTubes 6 1983-07.pdf\&psig=AOvVawOHWff-OVP-
YaoNtTRRRDh8\&ust=1581377039131000\&source=images\&cd=vfe\&ved=2ahUKEwj5idTWzsXnAhUB1XMBH a2aANYQr4kDegUIARDTAQ

Modifications:

- Fitted combo IEC mains socket and fuse -125 mA T IEC.
- Replaced all power supply pcb electro's with sufficiently high voltage rating using series connections and balancing resistors.
- Temporary disconnection of VS1 from input socket, due to hazard.

Kemp Counter-Timer Model 4DS10

- Added $4 \mathrm{k} 7+3 \mathrm{k} 3$ PRO2 in series with VS1 to VS2 dropper, and added 2-pin header to connect existing 10k. For 240 V mains, this gives:
o VS1=620V, VS2=469V for header in (10.8mA draw from VS2)
o VS1=630V, VS2=414V for header out (9.4mA draw from VS2)
Units and Tens cycle fine with a square wave through 33pF, but the Hundreds doesn't progress. A higher coupling capacitance causes rapid cycling of units.

To do:

- Make adaptor for ZP1481.
- Replace 3k3 with 2k2 in VS1 to VS2 dropper to bring VS2 to 480-500V, as recommended for MX147, and 430V VS2 feed for ZP1481.
- Check performance with a reasonable emitter.

Flying connections from front panel to PSU pcb:

1. No connection
2. Blue power switch
3. Blue power switch
4. Purple pcb bottom trace 12VAC
5. White noval connector pin 1 VS1
6. Red pcb top trace VS2
7. Grey pcb bus 2 VS3
8. Orange pcb LHS bottom VS4
9. Yellow reset switch VS5
10. Green pcb bus 1 OV
11. Black pcb bus 3 VS6

Flying connections from PSU pcb to Tx

1. Brown secondaryside
2. Green primary side
3. Yellow secondary side
4. Yellow secondary side
5. Brown secondary side
6. Black primary side
7. Red primary side

PT primary and IEC: megger 1 Gig at 1 kV ; DCR = 167 ohm
PT sec DCR=336
PSUD2 indicates 255V secondary.
Megger tested the cap in the probe at the Noval plug to 500VDC.

Kemp Counter-Timer Model 4DS10

2－46－3 SANGENJAYA，SETAGAYA－KU TOKYO JAPAN

計 数 放 電 管

DK24 DK26

グロー放電を利用したもので，簡単な回路構成によって高速の10進計数が行 なえ，その表示はグロー放電の位置で計数値を読取ることが出来ます。計数器以外にも数値制御として利用出来，広範囲の用途を有しています。

MECHANICAL DATA（DK 23）：
BASE． \qquad Intermediate Octal 8－pin
ZERO POSITION ．．．．．．Cathode \＃O，Aligned with Pin－7

Figure 1 －Microcontroller to DK23 Dekatron Interface
NOMINAL TUBE DROP（DK 23，Anode－Cathode）．．． 190 Vdc

DK23 BASE CONNECTIONS

GEIGER MÜLLER TUBE

QUICK REF ERENCE DATA		
Halogen quenched end window beta and gamma tube		
Recommended working voltage	500	
Window thickness	2 to 3	
Window diameter	9	

OUTLINE DRAWING

WINDOW

All dimensions in mm

Thickness
Effective diameter
Material

CATHODE

Thickness
Sensitive length
Material

FILLING

CAPACITANCE

Anode to cathode

ELECTRICAL CONNECTIONS

Cathode
Anode

250

2 to 3	$\mathrm{mg} / \mathrm{cm}^{2}$
9	mm
mica	

39 Chrome iron (28% chrome)

Neon, argon and halogen

$$
2.0
$$

$\mathbf{p F}$

Strap

Clip
OPERATING CHARACTERISTICS (T $\mathrm{Tamb}=25^{\circ} \mathrm{C}$)
measured in circuit of Fig. 1
Max. starting voltage 325 V
Starting voltage temperature coefficient 0.5
V/degC400V
Min. plateau length 200 V
Max. plateau slopeRecommended working voltage0.03$\% / v$
500 V
Max. background at 500 V shielded with50 mm lead and 3 mm aluminium10counts/min90
$\mu \mathrm{s}$Max. dead time at 500 V
RATINGS (ABSOLUTE MAXIMUM SYSTEM)
Min. anode resistor 4.7 M Ω
Max. anode voltage 600
Max. ambient temperature $+75$
Min. ambient temperature -50
TEST INPUT CIRCUIT
$\mathrm{R} 1=10 \mathrm{M} \Omega$

$\mathrm{R} 2=220 \mathrm{k} \Omega$

$\mathrm{Cl}=1 \mathrm{pF}$

$\mathbf{R 1} \mathbf{C l}=\mathbf{R} 2 \mathrm{C} 2$

Fig. 1

Particle and radiation detectors

end window beta G-M tubes

Type No.	Window Diamerer (mm)	Window Thickness $\left(\mathrm{mg} / \mathrm{cm}^{2}\right)$	Recommended Working Vol tage (V)	Max.* Background (counts/min)	Dead Time (approx.) ($\mu \mathrm{s}$)
2P1400	9	2 to 3	500	10	90
2P1481	17	2.5 to 3	430	30	120
ZP1480	17	2.5 to 3	430	30	120
ZP1420	17	1.5 to 2	550	15	150
t2P1440	19.8	1.5 to 2	600	8	65
ZP1410	19.8	1.5 to 2	575	15	175
2P1470	24.1	1.5 to 2.5	600	25	70
2P1430	27.8	1.5 to 2.5	575	25	190
tZP1450	27.8	1.5 to 2	625	18	60
2P1460	51	3.5 to 4	900	45	45

*Shielded with 50 mm lead and 3 mm aluminium.
tSmall quantities suitable for anticoincidence applications in conjunction with a guard tube may be available on request to Mullard Ltd.

gamma sensitive G-M tubes

Type No.	Gamma Sensitivity (counts/min)	Recommended Working Voltage (V)	Max.* Background (counts/min)	$\begin{gathered} \text { Dead Time } \\ \left.\begin{array}{c} \text { (approx. }) \\ (\mu \mathrm{s}) \end{array}\right) \end{gathered}$
2P1210	$6800 \ddagger$	430	40	200
2P1220	$13000 \ddagger$	430	75	210

TIMERS, COUNTERS AND RATE MEASUREMENT

the Trochotron and the Philips E1 T; they have the advantage of speed, in that count rates of the order of 200,000 per second are possible. The fastest glow tubes can count at about a tenth of this rate.

For biological work the glow-discharge types are usually fast enough and it is not proposed to consider cathode ray counters further. As examples of the former, the Ericcson Dekatrons type GCl0 B and GCl 0 D will be briefly discussed; the only operational difference between these two tubes is their upper limiting counting speeds, 4,000 counts per second with the former, 20,000 counts per second with the latter.

Figure 41.12
The GC 10 B-The GC 10 B comprises a central disc-shaped anode surrounded peripherally by 30 equally spaced rod-like electrodes. Electrodes $1-4-7-10 \ldots 25$ are connected together interna!ly and brought to an external connection as 'cathodes'. Electrode 28 is brought out separately

Figure 41.13
as the 'output' or 'carry' cathode. Electrodes $2-5-8 \ldots 29$ are connected together and brought out as 'first guides' and similarly 3-6-9 ... 30 as 'second guides'. The gas filling is neon. The circuit diagram is as in Figure 41.12. Consider now the circuit in Figure 41.13. On applying the HT the glow strikes between the anode and one of the cathodes, the nth say. There is no possibility of the glow bridging the anode and one of the guides because the latter are biased such that the potential difference is insufficient. However, if a negative pulse of sufficient magnitude be applied via a

COUNTERS

capacitor to the first guide, the glow transfers one electrode round the ring: if a fraction of a second later a similar negative pulse is then applied to the second guide, the glow advances a step further. At the conclusion of the second pulse the glow is nearer to the $n+1$ th cathode than to the n th, and in consequence moves forward once more, thus accomplishing one count. At the completion of each ten counts the glow passes the output cathode, and a positive pulse is developed across the load resistor by the passage of the glow current through it.

Figure 41.14
The GC 10 B is, for obvious reasons, called a 'double pulse' dekatron, and driving it is seen to be a matter of providing two negative pulses in quick succession. This may be done in a number of ways; in most of them a negative pulse is applied directly to the first guides and via a low-pass filter to the second, as in Figure 41.14. With properly chosen values the waveforms are then as sketched in Figure 41.15.

Figure 41.15
The output pulse from one dekatron is in the wrong phase and of insufficient magnitude to drive another. A circuit recommended by the manufacturers which effects the necessary phase reversal, amplification and double pulse production is shown in Figure 41.16. It makes use of the high-speed trigger-tetrode type GTE 175 M , which is convenient in that no cathode heater power is required. This circuit works up to 500 counts $/ \mathrm{sec}$.

The GC 10 D-This high-speed dekatron has 40 electrodes equally spaced around the anode, made up of 10 cathodes and 3 sets of guides. All first guides are brought out together as one connection, and all second guides as another. The third guides are divided, as are the cathodes, into output third guide and all other third guides, and output cathode and all other cathodes: the output third guide, of course, precedes the output cathode. The gas filling appears to be argon. The circuit diagram is as in

Figure 41.16

Figure 41.17. Glow transfer is achieved in the GC 10 D by applying a single pulse only. This is done by making use of both the leading and trailing edges of the transfer pulse, and by the phenomenon called 'auto transfer', which may be explained as follows:

In Figure 41.18 we have the anode and two electrodes A and B, which may be cathodes or guides. If the glow can by some means be caused to alight on electrode A, the glow current will charge C to a definite potential difference determined by R. If by this process A becomes sufficiently positive the glow 'auto-transfers' to the more negative electrode $B . C$ then discharges again through R, but the glow will remain at B.

Figure 41.17

Figure 41.18

Thus a typical GC 10 D drive circuit is shown in Figure 41.19. Let the glow be on the nth cathode. On the arrival of the leading edge of the transfer pulse the first and second guides are driven sufficiently negative to draw the glow on to the first guide, whereupon it auto-transfers to the second. The back edge of the transfer pulse then comes along, driving the first and second guides positive again. The third guides are now relatively

COUNTERS

very negative and in consequence the glow moves there, only to be autotransferred to the $n+1$ th cathode.
It might seem at first sight that the first and third guides might be dispensed with; that the leading edge of the transfer pulse could be used to move the glow from nth cathode to a guide, and the trailing edge would then move it on the $n+1$ th cathode. The difficulty is to prevent its moving back to the nth again. In point of fact single-guide tubes do exist; specially shaped electrodes ensure that transfer occurs in the required direction.

Figure 41.19
A GC 10 D can be driven from another GC 10 D via a GTE 175 M highspeed trigger tetrode at rates up to $1,000 / \mathrm{sec}$. The necessary circuit is shown in Figure 41.20, and is reproduced from part of reference 4 in this chapter.

Figure 41.20
A scaler for radioactivity measurements using dekatron counters has been described by Florida and Williamson ${ }^{12}$. Kerkut ${ }^{13}$ has given details of a dekatron action-potential counter. The time marker, employing dekatrons, published by Kay has already been mentioned.

